Post Quantum Cryptography for the IoT

Simona Samardjiska
Digital Security Group – Radboud University
Crypto in the IoT - Where do we stand?

Few years ago:
- OWASP 2014, HP study 2015, Symantec 2015

- Six out of 10 devices that provide user interfaces were vulnerable to a range of issues such as persistent XSS and weak credentials.
- 80 percent of devices along with their cloud and mobile application components failed to require passwords of a sufficient complexity and length.
- 90 percent of devices collected at least one piece of personal information via the device, the cloud, or its mobile application.
- 70 percent of devices used unencrypted network service.
- 70 percent of devices along with their cloud and mobile application enable an attacker to identify valid user accounts through account enumeration.
Crypto in the IoT - Where do we stand?

Few years ago:
- OWASP 2014, HP study 2015, Symantec 2015
- Crypto not used or used improperly
- The global picture is more or less still the same
 - October 2016: Dyn DNS provider DDoS attack - Mirai malware botnet (DVRs and webcams) brings down Twitter, Amazon, Reddit, Spotify, Netflix, PlayStation Network
 - April 2017: BrickerBot, Persirai, ...

WikiLeaks, March 2017: “...exposes how the Central Intelligence Agency hacks smartphones, computer operating systems, message applications and internet-connected televisions…”

Altman Vilandrie & Company, April 2017: “Almost half of all companies in the US using an IoT network have been the victims of recent security breaches”
IoT soup crypto challenges

• Crypto is a solution for many of the IoT security issues - But it is costly!

• Major problem – constrained environment
 - Memory constrains
 - Typically several KB
 - 8 bit NXP RS08: 64B-16B RAM
 - Energy and power consumption
 - RFID tags, solar powered sensors
 - Chip area
 - FPGA – LUTs, flip-flops, multiplexers
 - ASIC – NAND gates (GE)
 - In RFID 200-2000 GE for security

- Latency
- Limited set of instructions

• Many devices should be very cheap
 - Yet, Nist approved ATECC508A supports ECDH and ECDSA for <0.8$, and is 5mm2

• One size fits all approach not possible
 - Still standards necessary!
Solutions

- **Application specific cryptography**
 - Different platforms
 - Different usage
 - Different critical security issue
 - Different performance requirements

- **Lightweight cryptography**
 - Trade-off between security and performance
 - FELICS project www.cryptolux.org/index.php/FELICS - benchmarking lightweight crypto
 - NIST recommendations and (soon) standards
 - NIST-Approved Cryptographic Primitives in Constrained Environments

- **Transport layer security**
 - Wide implementation of DTLS
 - PKI for IoT
 - Key management, key generation, key distribution

Stands necessary for each and every one!
The quantum computer threat

• A universal quantum computer - Deutsch ‘85
 - Based on the principles of quantum mechanics
 - Capable of efficiently simulating an arbitrary physical system
The quantum computer threat

- **A universal quantum computer** - Deutsch ‘85
 - Based on the principles of quantum mechanics
 - Capable of efficiently simulating an arbitrary physical system

"With our recent four-qubit network, we built a system that allows us to detect both types of quantum errors," says Jerry Chow, manager of experimental quantum computing at IBM’s Thomas J. Watson Research Center, in Yorktown Heights, N.Y. Chow, who, along with his IBM colleagues detailed their experiments in the 29 April issue of the journal Nature Communications, says, "This is the first demonstration of a system that has the ability to detect both bit-flip errors and phase errors" that exist in quantum computing systems.

The IBM system consists of four quantum bits, or qubits, arranged in a 2-by-2 configuration on a chip measuring about 1.6 square centimeters (0.25 square
The quantum computer threat

• A universal quantum computer - Deutsch ‘85
 - Based on the principles of quantum mechanics
 - Capable of efficiently simulating an arbitrary physical system
Quantum algorithms breakthroughs

Deutsch's algorithm
Demonstrates task quantum computer can perform in one shot that classically takes two shots.

Bernstein-Vazirani algorithm
Demonstrates a superpolynomial separation between probabilistic and quantum algorithms.

Deutsch-Jozsa algorithm
Demonstrates an exponential separation between classical deterministic and quantum algorithms.
Quantum algorithms breakthroughs

Abelian hidden subgroup problem
[Boneh and Lipton]
Superpolynomial speedup over classical algorithms

Grover’s algorithm
Searching an unsorted database
Quadratic speedup over classical algorithms

Shor’s algorithm
Efficient algorithm for the
Integer factorization problem & the
Discrete logarithm problem
Superpolynomial speedup over classical algorithms
Quantum algorithms breakthroughs

Breakthrough Algorithms
- Not only examples, but of critical practical value
- Contemporary security relies on these problems
- Start the era of broader interest in quantum computing and quantum technology
Today’s cryptography in use?

Algorithms we use:

- **RSA encryption scheme**
- **ElGamal encryption/signature schemes**
 - DSA – digital signature
- **Diffie-Hellman (DH) key exchange**
 - MQV key agreement
- **Elliptic curve cryptography**
 - ECDSA, EdDSA
 - ECDH, ECMQV
- **Pairing based cryptography**
 - Tripartite Key exchange
 - Identity based encryption / signatures / key exchange
 - Attribute based encryption
Today’s cryptography in use?

Algorithms we use:
- RSA encryption scheme
- ElGamal encryption/signature schemes
 - DSA – digital signature
- Diffie-Hellman (DH) key exchange
 - MQV key agreement
- Elliptic curve cryptography
 - ECDSA, EdDSA
 - ECDH, ECMQV
- Pairing based cryptography
 - Tripartite Key exchange
 - Identity based encryption / signatures / key exchange
 - Attribute based encryption

Practically implemented in:
- PKI / PGP /
- Cryptographic protocols
 - SSL/TLS (HTTPS, FTPS)
 - SSH (SFTP, SCP)
 - IPsec (IKE)
 - IEEE 802.11
 - ……
- Commitments, Zero Knowledge
- Electronic voting
- Digital cash/credentials
- Multiparty computation
- ……
Today’s cryptography in use?

Broken by Quantum Algorithms for the Hidden subgroup problem

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Key Length</th>
<th>Effective Key Strength / Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conventional Computing</td>
</tr>
<tr>
<td>RSA-1024</td>
<td>1024 bits</td>
<td>80 bits</td>
</tr>
<tr>
<td>RSA-2048</td>
<td>2048 bits</td>
<td>112 bits</td>
</tr>
<tr>
<td>ECC-256</td>
<td>256 bits</td>
<td>128 bits</td>
</tr>
<tr>
<td>ECC-384</td>
<td>384 bits</td>
<td>256 bits</td>
</tr>
</tbody>
</table>

Effective key strength for conventional computing derived from NIST SP 800-57 “Recommendation for Key Management”
Today’s cryptography in use?

Influenced by Search and collision (Grover – like) Algorithms

Doubling of key size

(Search algorithm)

- **Block ciphers**
 - AES, IDEA, Blowfish, GOST...
- **Stream ciphers**
 - CryptMT, Salsa20, Trivium, Edon80...
- **Hash functions (preimages)**
 - SHA-1, SHA-2, SHA-3
 - Hash based signatures
- **(All symmetric key primitives)**
 - MACs, HMACs, PRNGs, AE ciphers...
- **Primitives based on NP-hard problems**
 - Code-based, Lattice-based, Multivariate systems
Today’s cryptography in use?

Influenced by Search and collision (Grover – like) Algorithms

Doubling of key size
(Search algorithm)

- **Block ciphers**
 - AES, IDEA, Blowfish, GOST...
- **Stream ciphers**
 - CryptMT, Salsa20, Trivium, Edon80...
- **Hash functions (preimages)**
 - SHA-1, SHA-2, SHA-3
 - Hash based signatures
- **(All symmetric key primitives)**
 - MACs, HMACs, PRNGs, AE ciphers...
- **Primitives based on NP-hard problems**
 - Code-based, Lattice-based, Multivariate systems

Birthday bound $\sqrt{N} \rightarrow \sqrt[3]{N}$

Collision algorithm:

- **Hash functions (collisions)**
- **Primitives based on NP-hard problems**
 - Generalized birthday attacks
 (Information Set Decoding) on
 Code-based/Lattice-based cryptosystems
Today’s cryptography in use?

Not trivial, but manageable!

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Key Length</th>
<th>Effective Key Strength / Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
</tr>
<tr>
<td>AES-128</td>
<td>128 bits</td>
<td>128 bits</td>
</tr>
<tr>
<td>AES-256</td>
<td>256 bits</td>
<td>256 bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional (Preimage/Collisions)</td>
</tr>
<tr>
<td>SHA-256</td>
<td>256/128 bits</td>
</tr>
<tr>
<td>SHA-512</td>
<td>512/256 bits</td>
</tr>
</tbody>
</table>

Effective key strength for conventional computing derived from NIST SP 800-57 “Recommendation for Key Management”
It’s rather unlikely that (under the assumption that they are ever built) quantum computers will kill ALL classical cryptography… …At least not symmetric cryptography!
It’s **rather unlikely** that (under the assumption that they are ever built) **quantum computers will kill ALL classical cryptography**…
…At least not symmetric cryptography!

What about public key cryptography?

PKC discovered

Quantum computer built

Then what?

1976 20XX

Will we need **quantum cryptography**?

Or

Is it possible to have **strong classical cryptography** in the quantum world?
Post Quantum Cryptography

Cryptosystems believed to be secure against quantum computer attacks

Classical

Alice's encryption key

K_A

plaintext

encryption algorithm

ciphertext

decryption algorithm

plaintext

Classical

Bob's decryption key

K_B

Quantum!
Post Quantum Cryptography

Cryptosystems believed to be secure against quantum computer attacks

- **Code-based systems** (Syndrome decoding)
 - Encryption

- **Multivariate Quadratic systems** (Polynomial system solving - MQ)
 - Signatures

- **Lattice-based systems** (Hard problems on lattices – LWE, SVP)
 - Encryption, signatures, key agreement

- **Hash-based systems** (Hash functions)
 - Signatures

- **Isogeny based systems** (isogenies on supersingular elliptic curves)
 - Key agreement
Code-based Cryptosystems

- Coding theory essentials
- Noisy channel communication:

\[x = x_1 \cdots x_k \rightarrow \text{Encoder} \rightarrow c = c_1 \cdots c_n \]

\[e = e_1 \cdots e_n \rightarrow \text{Channel} \rightarrow y = c + e \]

\[\hat{x} \rightarrow \text{Decoder} \]
Code-based Cryptosystems

- Coding theory essentials
- In cryptography:

\[
x = x_1 \cdots x_k \quad \text{Encoder} \quad c = c_1 \cdots c_n
\]

\[
e = e_1 \cdots e_n \quad \text{Add intentional noise}
\]

\[
y = c + e \quad \hat{x} \quad \text{Decoder}
\]
Code-based Cryptosystems

- Hard underlying problem (NP hard): Decoding random linear codes
- No reduction to the hard problem – instead, related problems believed to be hard
- Confidence in encryption schemes
- McEliece ‘78:

\[
x = x_1 \cdots x_k
\]

\[
e = e_1 \cdots e_n
\]

\[
\hat{x}
\]

\[
y = c + e
\]
Code-based Cryptosystems

- Hard underlying problem (NP hard): Decoding random linear codes
- No reduction to the hard problem – instead, related problems believed to be hard
- Confidence in encryption schemes
- McEliece ‘78:

\[x = x_1 \cdots x_k \]

Encoder

\[e = e_1 \cdots e_n \]

Add intentional noise

Efficient decoder for \(\|e\| \leq t \)

\[y = c + e \]

Decoder

\[S^{-1} \cdot G_{k\times n} \cdot P_{n\times n} \]

Goppa code

Permutation matrix

Scrambler matrix
Code-based Cryptosystems - Parameters

- McEliece '78 and dual system Niederreiter [Becker, Joux, May, & Meurer, 12] [Bernstein, 09], Implementation McBits [Bernstein, Chou, & Schwabe, 13]

<table>
<thead>
<tr>
<th>m, t</th>
<th>McEliece</th>
<th>Niederreiter</th>
<th>Key size</th>
<th>Classical security</th>
<th>PQ Security</th>
<th>Decoding (cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, 50</td>
<td>1024</td>
<td>524</td>
<td>500</td>
<td>284</td>
<td>32 KB</td>
<td>52</td>
</tr>
<tr>
<td>11,40</td>
<td>2048</td>
<td>1608</td>
<td>440</td>
<td>280</td>
<td>88 KB</td>
<td>81</td>
</tr>
<tr>
<td>12,50</td>
<td>4096</td>
<td>3496</td>
<td>600</td>
<td>385</td>
<td>277 KB</td>
<td>120</td>
</tr>
</tbody>
</table>

- QC-MDPC [Misoczki, Tillich, Sendrier, & Barreto, 13], Rank-Metric codes [Loidreau, 17]
MQ (multivariate quadratic) Cryptosystems

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem – related problems believed to be hard
- Confidence in signatures
MQ (multivariate quadratic) Cryptosystems

• Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
• (Mainstream) No reduction to the hard problem – related problems believed to be hard
• Confidence in signatures
MQ (multivariate quadratic) Cryptosystems

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem – related problems believed to be hard
- Confidence in signatures
MQ (multivariate quadratic) Cryptosystems

- Hard underlying problem (NP hard): Polynomial system solving (PoSSo)
- (Mainstream) No reduction to the hard problem – related problems believed to be hard
- Confidence in signatures

PoSSo:

Input:

\[p_1, p_2, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n] \]

Question:

Find - if any - \((u_1, \ldots, u_n) \in \mathbb{F}_q^n \) st.

\[
\begin{cases}
p_1(u_1, \ldots, u_n) = 0 \\
p_2(u_1, \ldots, u_n) = 0 \\
\vdots \\
p_m(u_1, \ldots, u_n) = 0
\end{cases}
\]
MQ (multivariate quadratic) Cryptosystems

- Fast, simple operations, short signatures
- Large keys, no security proofs
- Parameters for Gui [Petzoldt, Chen, Yang, Tao, Ding, 15], Rainbow [Ding, Schmidt, 04]
- Implementation [Chen, Li, Peng, Yang, Cheng, 17]

<table>
<thead>
<tr>
<th>Security (post quantum)</th>
<th>Signature scheme</th>
<th>Public key (kB)</th>
<th>Private key (kB)</th>
<th>Signature size (bit)</th>
<th>Sign() k cycles</th>
<th>Verify() k cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Gui(GF(2),120,9,3,3,2)</td>
<td>110.7</td>
<td>3.8</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Gui(GF(2),161,9,6,7,2)</td>
<td>271.8</td>
<td>7.5</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>GUI(4,120,17,8,8,2)</td>
<td>225.8</td>
<td>9.6</td>
<td>288</td>
<td>7,992.8</td>
<td>342.5</td>
</tr>
<tr>
<td>80</td>
<td>Rainbow(GF(256),19,12,13)</td>
<td>25.3</td>
<td>19.3</td>
<td>352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Rainbow(GF(16),25,25,25)</td>
<td>65.9</td>
<td>43.2</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Rainbow(GF(31),28,28,28)</td>
<td>123.2</td>
<td>74.5</td>
<td>420</td>
<td>77.4</td>
<td>70.8</td>
</tr>
</tbody>
</table>
MQ (multivariate quadratic) Cryptosystems

- Hard underlying problem (NP hard): **Polynomial system solving (PoSSo)**

Two new provably secure signatures
- **MQDSS** [Chen, Hülsing, Rijneveld, S, Schwabe, 16] – security proof in the ROM
- **Sofia** [Chen, Hülsing, Rijneveld, S, Schwabe, 17] – security proof in the Quantum ROM

<table>
<thead>
<tr>
<th>Security (post quantum)</th>
<th>Signature scheme</th>
<th>Public key (B)</th>
<th>Private key (B)</th>
<th>Signature size (KB)</th>
<th>Sign() k cycles</th>
<th>Verify() k cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 (ROM)</td>
<td>MQDSS-31-64</td>
<td>72</td>
<td>64</td>
<td>40</td>
<td>8,510.6</td>
<td>5,752.6</td>
</tr>
<tr>
<td>128 (QROM)</td>
<td>Sofia-4-128</td>
<td>64</td>
<td>32</td>
<td>123</td>
<td>21,305.5</td>
<td>15,492.6</td>
</tr>
</tbody>
</table>

- Transform from provably secure Identification schemes
MQDSS

IDS

\[
\begin{align*}
\mathcal{P} & \quad \mathcal{V} \\
\text{com} & \leftarrow \mathcal{P}_0(\text{sk}) & \text{com} \\
\text{resp}_1 & \leftarrow \mathcal{P}_1(\text{sk, com, ch}_1) & \text{ch}_1 & \leftarrow \text{R ChS}_1(1^k) \\
\text{resp}_2 & \leftarrow \mathcal{P}_2(\text{sk, com, ch}_1, \text{resp}_1, \text{ch}_2) & \text{ch}_2 & \leftarrow \text{R ChS}_2(1^k) \\
\end{align*}
\]

FS signature

Signer

\[
\begin{align*}
\text{com} & \leftarrow \mathcal{P}_0(\text{sk}) \\
\text{ch}_1 & \leftarrow H_1(m, \text{com}) \\
\text{resp}_1 & \leftarrow \mathcal{P}_1(\text{sk, com, ch}_1) \\
\text{ch}_2 & \leftarrow H_2(m, \text{com, ch}_1, \text{resp}_1) \\
\text{resp}_2 & \leftarrow \mathcal{P}_2(\text{sk, com, ch}_1, \text{resp}_1, \text{ch}_2) \\
\text{output} : \sigma & = (\text{com, resp}_1, \text{resp}_2)
\end{align*}
\]

Verifier

\[
\begin{align*}
\text{ch}_1 & \leftarrow H_1(m, \text{com}) \\
\text{ch}_2 & \leftarrow H_2(m, \text{com, ch}_1, \text{resp}_1) \\
\text{b} & \leftarrow \text{Vf}(\text{pk, com, ch}_1, \text{resp}_1, \text{ch}_2, \text{resp}_2) \\
\text{output} : \text{b}
\end{align*}
\]
Lattice-based Cryptosystems

- Encryption, signatures, key exchange
- Many different hard problems

Fig. from Joop van de Pol's MSc-thesis
Lattice-based Cryptosystems

• Learning with errors (LWE)
• Variants R-LWE, Module-LWE, LPN, …
 - Additional structure undermines security claims

Let $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$

Let χ be an error distribution on \mathcal{R}_q

Let $s \in \mathcal{R}_q$ be secret

Attacker is given pairs $(a, as + e)$ with
 - a uniformly random from \mathcal{R}_q
 - e sampled from χ

Task for the attacker: find s

Common choice for χ: discrete Gaussian
Lattice-based Cryptosystems

- Learning with errors (LWE)
- Variants R-LWE, Module-LWE, LPN, …
 - Additional structure undermines security claims

Let $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$

Let χ be an error distribution on \mathcal{R}_q

Let $s \in \mathcal{R}_q$ be secret

Attacker is given pairs $(a, as + e)$ with
 - a uniformly random from \mathcal{R}_q
 - e sampled from χ

Task for the attacker: find s

Common choice for χ: discrete Gaussian

<table>
<thead>
<tr>
<th>Alice (server)</th>
<th>Bob (client)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s, e \overset{s}{\leftarrow} \chi$</td>
<td>$s', e' \overset{s}{\leftarrow} \chi$</td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>$u \leftarrow as' + e'$</td>
</tr>
<tr>
<td>$u \overset{u}{\leftarrow}$</td>
<td></td>
</tr>
</tbody>
</table>

Alice has $v = us = ass' + e's$

Bob has $v' = bs' = ass' + es'$
Lattice-based Cryptosystems

- Learning with errors (LWE)
- Variants R-LWE, Module-LWE, LPN, …
 - Additional structure undermines security claims

Let $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$

Let χ be an error distribution on \mathcal{R}_q

Let $s \in \mathcal{R}_q$ be secret

Attacker is given pairs $(a, as + e)$ with
 - a uniformly random from \mathcal{R}_q
 - e sampled from χ

Task for the attacker: find s

Common choice for χ: discrete Gaussian

<table>
<thead>
<tr>
<th>Alice (server)</th>
<th>Bob (client)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s, e \overset{$}{\leftarrow} \chi$</td>
<td>$s', e' \overset{$}{\leftarrow} \chi$</td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>$u \leftarrow as' + e'$</td>
</tr>
</tbody>
</table>

Alice has $v = us = ass' + e's$
Bob has $v' = bs' = ass' + es'$

approximately same
small
Lattice-based Cryptosystems

- FRODO [Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, 16]
- NewHope [Alkim, Ducas, Pöppelmann, Schwabe, 16]
 - Google Experiment for Chrome 2016: New hope + X25519 used in Chrome Canary for access to some Google services
- NTRU Prime [Bernstein, Chuengsatiansup, Lange, van Vredendaal, 16]
- Kyber [Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Stehlé, 17]

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Security bits/(type)</th>
<th>Hard problem</th>
<th>KeyGen (cycles)</th>
<th>Enc (cycles)</th>
<th>Dec (cycles)</th>
<th>Public key (bytes)</th>
<th>Private key (bytes)</th>
<th>Ciphertext (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRODO</td>
<td>130 (pass.)</td>
<td>LWE</td>
<td>2 938 K</td>
<td>3 484 K</td>
<td>338 K</td>
<td>11 296</td>
<td>11280</td>
<td>11288</td>
</tr>
<tr>
<td>NewHope</td>
<td>255 (pass.)</td>
<td>Ring-LWE</td>
<td>88 920</td>
<td>110 986</td>
<td>19 422</td>
<td>1824</td>
<td>1792</td>
<td>2048</td>
</tr>
<tr>
<td>NTRU Prime</td>
<td>129 (CCA)</td>
<td>NTRU like</td>
<td>> 51488</td>
<td>1232</td>
<td>1417</td>
<td>1141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyber</td>
<td>161 (CCA)</td>
<td>Module-LWE</td>
<td>77 892</td>
<td>119 652</td>
<td>125 736</td>
<td>1088</td>
<td>2400</td>
<td>1184</td>
</tr>
</tbody>
</table>
Hash-based Signatures

- **Only secure hash function needed** (security well understood, standard model proof)
- Merkle, 89

Figure: Andreas Hülsing
Hash-based Signatures

• **Only secure hash function needed** (security well understood, standard model proof)

• Merkle, 89

Figure: Andreas Hülsing
Hash-based Signatures

- Only secure hash function needed (security well understood, standard model proof)
- Merkle, 89

\[\text{SIG} = (i=2, \text{H}, \text{OTS}, \text{OTS}, \text{OTS}) \]
Hash-based Signatures

- Most trusted post quantum signatures
- Two Internet drafts (drafts for RFCs), one in „waiting for ISRG review“

- XMSS – stateful, but forward secrecy [Buchmann, Dahmen, Hülsing, 11]
- SPHINCS – stateless [Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider, Schwabe, O’Hearn, 15]

<table>
<thead>
<tr>
<th></th>
<th>Sign (ms)</th>
<th>Verify (ms)</th>
<th>Signature (byte)</th>
<th>Public Key (byte)</th>
<th>Secret Key (byte)</th>
<th>Bit Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMSS-SHA-2</td>
<td>35.60</td>
<td>1.98</td>
<td>2084</td>
<td>1700</td>
<td>3,364</td>
<td>157</td>
</tr>
<tr>
<td>XMSS-AES-NI</td>
<td>0.52</td>
<td>0.07</td>
<td>2452</td>
<td>916</td>
<td>1,684</td>
<td>84</td>
</tr>
<tr>
<td>SPHINCS-256</td>
<td>13.56</td>
<td>0.39</td>
<td>41000</td>
<td>1056</td>
<td>1088</td>
<td>128</td>
</tr>
</tbody>
</table>
Challenges in Post Quantum Cryptography

• Key sizes, signature sizes and speed
 - Huge public keys, or signatures …. Or slow
 - ex. ECC 256b key vs McEliece 500KB key
 - ex. ECC 80B signature vs MQDSS 40KB signature

• Software and hardware implementation
 - Optimizations, physical security

• Standardization
 - What is the right choice of algorithm?

• Deployment
 - In TLS, DTLS, constrained devices, storage…
 - Will take a long time…
Challenges in Post Quantum Cryptography

• Key sizes, signature sizes and speed
 - Huge public keys, or signatures …. Or slow
 - ex. ECC 256b key vs McEliece 500KB key
 - ex. ECC 80B signature vs MQDSS 40KB signature

• Software and hardware implementation
 - Optimizations, physical security

• Standardization
 - What is the right choice of algorithm?

• Deployment
 - In TLS, DTLS, constrained devices, storage…
 - Will take a long time…
Ready for tomorrow: Infineon demonstrates first post-quantum cryptography on a contactless security chip

Security experts at Infineon’s Munich headquarters and the Center of Excellence for contactless technologies in Graz, Austria, made a breakthrough in this field. They implemented a post-quantum key exchange scheme on a commercially available contactless smart card chip. Key exchange schemes are used to establish an encrypted channel between two parties. The deployed algorithm is a variant of “New Hope”, a quantum-resistant cryptosystem also explored successfully by Google on a development version of the Chrome browser.

“The phantom of the quantum computer is keeping academia and the IT industry on high alert,” said Thomas Pöppelmann from Infineon’s Chip Card & Security Division, who has been co-developing the New Hope algorithm. “At Infineon, we are proud to be the first to transfer PQC onto contactless smart cards. Our challenges comprised the small chip size and limited memory capacity to store and execute such a complex algorithm as well as the transaction speed.” Thomas Pöppelmann and his co-researchers received the prestigious Facebook Internet Defense Prize 2016 for the development of New Hope.
Post Quantum Crypto for the IoT is not fantasy

- **MQ signatures** - short, fast - traditional choice for constrained devices
 - Rainbow hardware implementation [Tang et al., 11]
 - ALTERA Stratix II FPGA
 - Only 198 cycles for signing

- Rainbow impl. [Czypek, Heyse, Thomae, 12]
 - Atmel AVR ATxMega128a1 microchip
 - 32MHz, 8-bit architecture
 - 128KB Flash, 128KB SRAM
 - * NaCl for AVR microcontrollers http://nacl.cr.yp.to/

<table>
<thead>
<tr>
<th></th>
<th>Sign (s)</th>
<th>Verify (s)</th>
<th>Pub.key</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow(36,21,22)</td>
<td>0.25</td>
<td>0.28</td>
<td>136 kB</td>
<td>43 B</td>
</tr>
<tr>
<td>Ed25519*</td>
<td>1.02</td>
<td>0.73</td>
<td>32 B</td>
<td>64 B</td>
</tr>
</tbody>
</table>
Post Quantum Crypto for the IoT is not fantasy

- **MQ signatures** - short, fast - traditional choice for constrained devices
 Rainbow hardware implementation [Tang et al., 11]
 - ALTERA Stratix II FPGA
 - Only 198 cycles for signing

- Rainbow impl. [Czypek, Heyse, Thomae, 12]
 - Atmel AVR ATxMega128a1 microchip
 - 32MHz, 8-bit architecture
 - 128KB Flash, 128KB SRAM

 Rainbow(36,21,22) 0.25 0.28 136 kB 43 B
 Ed25519* 1.02 0.73 32 B 64 B

 * NaCl for AVR microcontrollers http://nacl.cr.yp.to/.

- Armed SPHINCS [Hülsing, Rijneveld, Schwabe, 15]
 - STM32L100C development board
 - ARM Cortex M3, ARMv7-M
 - 32MHz, 32-bit architecture, 16 regs
 - 256KB Flash, 16KB RAM

 XMSSMT 0.61 16 28288
 SPHINCS-256 18.4 0.51 41 kB 7 kB
Timeline

- Fall 2016 – formal Call For Proposals
- Nov 2017 – Deadline for submissions
- 3–5 years – Analysis phase
 - NIST will report its findings
- 2 years later – Draft standards ready

Call For Proposals Announcement

The National Institute of Standards and Technology (NIST) has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in FIPS 186-4, Digital Signature Standard, as well as special publications SP 800-56A Revision 2, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, and SP 800-56B Revision 1, Recommendation for Pair-Wises Key-Establishment Schemes Using Integer Factorization Cryptography. However, these algorithms are vulnerable to attacks from large-scale quantum computers (see NISTIR 8105 Report on Post Quantum Cryptography). It is intended that the new public-key cryptography standards will specify one or more additional unclassified, publicly disclosed digital signature, public-key encryption, and key-establishment algorithms that are available worldwide, and are capable of protecting sensitive government information well into the foreseeable future, including after the advent of quantum computers.
If computers that you build are quantum,
Then spies everywhere will all want 'em.
Our codes will all fail,
And they'll read our email,
Till we get crypto that's quantum,
and daunt 'em.

Jennifer and Peter Shor

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.

Volker Strassen