Virtual ICN-based IoT networks with vICN

Marcel Enguehard
Software Engineer & PhD Candidate
RIOT Summit 2017, Berlin, Germany
RIOT in the IoT vertical

Cloud

Access

Sensor network

© 2017 Cisco and/or its affiliates. All rights reserved.
How do we handle this huge amount of data in the access network?
Information Centric Networking

- Each retrievable content is named
- Name-based routing
- Pull based model w/ symmetric routing
- Every node is a cache

User application

Interest: /roomA/temperature

Content: 20° C

Sensor board
Vanilla ICN Forwarding

- Forward to “faces”
- 2 modules: Forwarding Interest Base (FIB) and Pending Interest Table (PIT)
- Interest → LPM in FIB
- Content → Symmetric routing through PIT
ICN for the IoT

• For the devices
 • Reduced stack size (Bacelli et al., ICN14)
 • Accommodate low duty cycles (Hahm et al., ICN17)

• For the access
 • Consumer and producer mobility handling (Augé et al., ICN15)
 • Native multicast (Samain et al., IEEE TMM 2017)

• For data processing
 • Independence from compute location
 • Aggregation of request
We need to test our verticals before deploying them in production
Challenges

• Large number of devices
• Mobility & traffic patterns
• Unified API for traffic generation, network management, etc
vICN objectives

- Programmability
- Reliability
- Scalability
vICN resource model

- Intent based-framework
- Object-based model
- State reconciliation between model and deployment

```python
cons = LxcContainer()
prod = LxcContainer()
link = Link(src=cons, dst=prod)
```
vICN resources

- Virtual representation of deployment element
- Node, forwarder, application, link, etc.
- Described by *attributes*
Example resource: Forwarder

- Represents an ICN forwarder
- Attributes:
 - node
 - cache_size
 - cache_policy (e.g., LRU)
 - log_file
 - etc.
vICN resources dependencies
Wireless emulators

- Currently implemented: WiFi, LTE
- Soon 802.15.4?

```python
Emulated802154Channel(
ap=AP,
stations=[client],
node=server
)
```
Monitoring through resource model

• Python model is used for both probing and actions
• Can be use to monitor network status and performances, handle errors, etc
vICN and RIOT

• RIOT as a resource in vICN
• Link emulation
• Foster research on full IoT vertical
Conclusion

- vICN is a programmable and efficient framework for network virtualization
- Complementary with RIOT for IoT experimentation